Ion Exchange in Glass – The Changes of Glass Refraction
نویسنده
چکیده
The phenomenon of ion exchange in glasses in the practical application has been known since the Middle Ages when it was used for coloring glass. However, the application of this phenomenon for the production of changes in the glass refraction associates with the waveguide technology. The development of this technology has started in the second half of the 20th century and was dictated by the huge potential of the optical transmission of information in comparison to its classical form that uses the transmission of electrical signals through wired links. The optical transmission, in turn, uses dielectric fibers, known as waveguides. The materials that since the beginning have been used for producing the fiber waveguides are oxide glasses. However, their attenuation in this study period were of about 1000 dB/km. In 1966 K.C. Kao and G.A. Hockman in their work [1] indicated the possibility of using for the near-infrared transmission a specially treated glass, devoid of impurities in the form of ions of iron, cobalt and copper, which are the main cause of the absorption of the energy in the propagating wave.
منابع مشابه
Producing the Gradient Changes in Glass Refraction by the Ion Exchange Method — Selected Aspects
This chapter presents the chosen aspects of the ion exchange technological method. Results of research refer to the refractive index profiles of planar waveguides produced by the ion exchange method in various glasses. All refractive index profiles were determined by measuring the effective refractive indices of the waveguide modes. In the first part of this chapter the processes of electrodiff...
متن کاملMicro-channels over the glass surface made by interaction of Ar+ laser beam and Ag+/Na+ ion-exchanged glasses
Micro-channels are made over the Ag+/Na+ ion-exchanged soda-lime glass surface by interaction of an intense Ar+ laser beam and the silver ions inside the glass matrix. The Ar+ laser beam reduces the Ag+ ions inside the matrix. The Ag+ atoms aggregate into silver nano-clusters around the interaction area, inside the glass matrix. Aggregation of the silver atoms and the thermal effects of the int...
متن کاملVoltage increase of aqueous lithium-ion batteries by Li-ion conducting Li1.5Al0.5Ge1.5(PO4)3 glass-ceramic
In this research, a lithium ion conducting lithium aluminum germanium phosphate (LAGP) glass-ceramic with a formula of Li1.5Al0.5Ge1.5(PO4)3 was synthesized by melt-quenching method and subsequent crystallization at 850 °C for 8 h. The prepared glass-ceramic was characterized using X-ray diffraction analysis (XRD) and field emission scanning electron microscopy (FESEM). The XRD patterns exhib...
متن کاملEffects of Thermal and Pressure Histories on the Chemical Strengthening of Sodium Aluminosilicate Glass
Glasses can be chemically strengthened through the ion exchange process, wherein smaller ions in the glass (e.g., Na+) are replaced by larger ions from a salt bath (e.g., K+). This develops a compressive stress (CS) on the glass surface, which, in turn, improves the damage resistance of the glass. The magnitude and depth of the generated CS depend on the thermal and pressure histories of the gl...
متن کاملImmunoglobulin A Preparation from Human Pooled Plasma Using Plasma Fractionation and Ion Exchange Chromatography
Background: In this study we have prepared the IgA solution from normal human plasma using plasma fractionation and ion exchange chromatography. Materials and Methods: Using fractionation of plasma with cold ethanol (starting with 8% ethanol), fraction III was prepared as a suitable source for IgA preparation. Then it was treated with caprylic acid for separation of impurities. For enrichm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012